Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N 2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N 2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N 16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N 16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N 2 from the N 5 group as revealed by the MD simulations.more » « less
-
The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells.more » « less
An official website of the United States government
